Non-isogenous abelian varieties sharing the same division fields
نویسندگان
چکیده
Two abelian varieties A 1 , 2 A_1, A_2 over a number field K"> K encoding="application/x-tex">K are strongly iso-Kummerian if the torsion fields K left-parenthesis left-bracket d right-bracket right-parenthesis"> ( stretchy="false">[ d stretchy="false">] stretchy="false">) encoding="application/x-tex">K(A_1[d]) and 2 encoding="application/x-tex">K(A_2[d]) coincide for all alttext="d greater-than-or-equal-to 1"> ≥ encoding="application/x-tex">d \geq 1 . For alttext="g 4"> g 4 encoding="application/x-tex">g 4 we construct geometrically simple, strongly iso-Kummerian alttext="g"> encoding="application/x-tex">g -dimensional that not isogenous. We also discuss related examples put significant constraints on any further pair.
منابع مشابه
Division fields of Abelian varieties with complex multiplication
L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de...
متن کاملEndomorphism fields of abelian varieties
We give a sharp divisibility bound, in terms of g, for the degree of the field extension required to realize the endomorphisms of an abelian variety of dimension g over an arbitrary number field; this refines a result of Silverberg. This follows from a stronger result giving the same bound for the order of the component group of the Sato–Tate group of the abelian variety, which had been proved ...
متن کاملAbelian varieties over finite fields
A. Weil proved that the geometric Frobenius π = Fa of an abelian variety over a finite field with q = pa elements has absolute value √ q for every embedding. T. Honda and J. Tate showed that A 7→ πA gives a bijection between the set of isogeny classes of simple abelian varieties over Fq and the set of conjugacy classes of q-Weil numbers. Higher-dimensional varieties over finite fields, Summer s...
متن کاملEndomorphisms of Abelian Varieties over Finite Fields
Almost all of the general facts about abelian varieties which we use without comment or refer to as "well known" are due to WEIL, and the references for them are [12] and [3]. Let k be a field, k its algebraic closure, and A an abelian variety defined over k, of dimension g. For each integer m > 1, let A m denote the group of elements aeA(k) such that ma=O. Let l be a prime number different fro...
متن کاملHomomorphisms of Abelian Varieties over Finite Fields
The aim of this note is to give a proof of Tate’s theorems on homomorphisms of abelian varieties over finite fields [22, 8], using ideas of [26, 27]. We give a unified treatment for both l 6= p and l = p cases. In fact, we prove a slightly stronger version of those theorems with “finite coefficients”. I am grateful to Frans Oort and Bill Waterhouse for useful discussions. My special thanks go t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2023
ISSN: ['2330-0000']
DOI: https://doi.org/10.1090/tran/8767